Search results for "Fermi's golden rule"

showing 4 items of 4 documents

CONSTRUCTION OF METASTABLE STATES IN QUANTUM ELECTRODYNAMICS

2004

In this paper, we construct metastable states of atoms interacting with the quantized radiation field. These states emerge from the excited bound states of the non-interacting system. We prove that these states obey an exponential time-decay law. In detail, we show that their decay is given by an exponential function in time, predicted by Fermi's Golden Rule, plus a small remainder term. The latter is proportional to the (4+β)th power of the coupling constant and decays algebraically in time. As a result, though it is small, it dominates the decay for large times. A central point of the paper is that our remainder term is significantly smaller than the one previously obtained in [1] and as…

PhysicsCoupling constantStatistical and Nonlinear PhysicsExponential functionsymbols.namesakeQuantum mechanicsQuantum electrodynamicsMetastabilityExcited stateBound statesymbolsFermi's golden ruleRemainderMathematical PhysicsFermi Gamma-ray Space TelescopeReviews in Mathematical Physics
researchProduct

Excitation Energy-Transfer in the LH2 Antenna of Photosynthetic Purple Bacteria via Excitonic B800 and B850 States

2000

A newly developed CIEM method that uses a combination of semi-empirical or ab-initio configuration interaction methods and exciton theory to predict electronic energies, eigenstates, absorption and CD spectra of aggregated chromophoric systems with environmental interactions included is extended and used for estimation of excitation energy transfer rates. Excitonic energy levels of the two ring systems the B800 and the B850 of the light harvesting antenna LH2 of Rhodopseudomonas acidophila and the corresponding absorption spectrum were calculated by assuming inter-ring interactions to be zero. Excitation energy transfer rates were calculated by using the Fermi Golden rule with the dipole - …

symbols.namesakeDipoleAbsorption spectroscopyChemistryExcitonsymbolsFermi's golden ruleGeneral ChemistryAtomic physicsConfiguration interactionHamiltonian (quantum mechanics)ExcitationSpectral lineJournal of the Chinese Chemical Society
researchProduct

Dynamically screened vertex correction to $GW$

2020

Diagrammatic perturbation theory is a powerful tool for the investigation of interacting many-body systems, the self-energy operator $\mathrm{\ensuremath{\Sigma}}$ encoding all the variety of scattering processes. In the simplest scenario of correlated electrons described by the $GW$ approximation for the electron self-energy, a particle transfers a part of its energy to neutral excitations. Higher-order (in screened Coulomb interaction $W$) self-energy diagrams lead to improved electron spectral functions (SFs) by taking more complicated scattering channels into account and by adding corrections to lower order self-energy terms. However, they also may lead to unphysical negative spectral f…

PhysicsSettore FIS/03Strongly Correlated Electrons (cond-mat.str-el)Operator (physics)Vertex functionFOS: Physical sciences02 engineering and technologyPositive-definite matrix021001 nanoscience & nanotechnology01 natural sciencestiiviin aineen fysiikkaCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanics0103 physical sciencesCoulombsymbolsQuasiparticleFermi's golden rulePerturbation theory (quantum mechanics)approksimointikvanttifysiikka010306 general physics0210 nano-technologyFermi gas
researchProduct

Appearance of Fermion-Condensation Quantum Phase Transition in Fermi Systems

2014

As high-\(T_c\) superconductors are represented primarily by 2D layered structures, in Sect. 5.1 we discuss the superconducting state of a 2D liquid of heavy electrons, and within the framework of Gor’kov microscopic equations construct the Green functions of the FC state. On the other hand, our study can easily be generalized to the 3D case. To show that there is no fundamental difference between the 2D and 3D cases, we derive Green’s functions for the 3D case in Sect. 5.1.1. In Sect. 5.2, we consider the dispersion law and lineshape of single-particle excitations. Section 5.3 is devoted to the behavior of heavy-electron liquid with FC in magnetic field. In Sect. 5.4, we analyze conditions…

PhysicsQuantum phase transitionsymbols.namesakeCondensed matter physicsCondensed Matter::SuperconductivityQuantum critical pointsymbolsQuantum oscillationsFermi's golden ruleFermi energyFermi liquid theoryQuantum phasesFermi gas
researchProduct